
Enumeration Types
and Structures

CSE 130: Introduction to
Programming in C

Stony Brook University

Enumeration Types

Enumeration Types

❖ Used to:

❖ name a finite set

❖ declare elements of that set (enumerators)

❖ Used as programmer-specified constants

❖ Ex. enum color {red, blue, green, yellow};

❖ color is the tag name

Enumerators

❖ Enumerators specify the values that variables of the
enumerated type can take on

❖ Ex. enum boolean {false, true};

❖ These are constants of type int

❖ By default, they are given the values 0, 1, ...

❖ They can also be assigned specific values

Enumeration Type Variables

❖ Ex. enum color c1, c2;

❖ c1 and c2 are of type enum color

❖ Note: the type is enum color, NOT color

❖ c1 and c2 can only take on the values red, blue,
green, and yellow:

c1 = green;

Initializing Enumerators

❖ enum suit {clubs = 1, diamonds, hearts,
spades};

❖ diamonds, hearts, and spades have the values 2, 3, and 4
respectively

❖ Uninitialized enumerators are assigned consecutive values,
starting after the last initialized enumerator

❖ The values may be duplicated, but the identifiers must be
unique

More Declaration Examples

❖ enum suit {clubs, diamonds, hearts, spades} a;

❖ a is of type enum suit

❖ If we omit the tag name, then every variable of that type must
be declared as part of the enumeration type:

❖ enum {fir, pine} tree;

❖ No other variables of type enum {fir, pine} can be
declared

enum move {rock, paper, scissors};
enum outcome {win, lose, tie};
...
enum outcome result;
if (player == computer)

result = tie;
else
{

switch(player)
{

case paper:
result = (computer == rock) ? win : lose;
break;

case scissors:
result = (computer == paper) ? win : lose;
break;

etc.
}

}

Structures

The Structure Type

❖ A structure makes it possible to aggregate components into a
single, named variable

❖ Ex. a bank account contains an account #, a balance, an
interest rate, etc.

❖ Structure components have individual names, and can be
accessed individually

❖ A structure is a derived type

❖ It’s sort of like a primitive/limited class from an object-oriented
language

Declaring a Structure

❖ Structure declarations begin with the keyword struct,
followed by a tag name and a brace-enclosed list of
components

❖ The tag name can be used to declare variables of the
structure’s type

❖ The variable type is struct tag-name

Structure Example
struct account /* tag name is account */

{

long number;

float balance;

float interestRate;

};

struct account myAcct;

Structure Members

❖ Members of a structure can be accessed using the structure
member (“.”) operator:

struct account a;
a.balance = 1234.56;
a.number = 8463745;

❖ Member names must be unique within the same structure

❖ Two different structure types may have identical member
names, though

Structure Declarations

❖ We can combine a structure definition with variable
declarations

❖ struct card
{

int value;
char suit;

} c, deck[52];

Structure Example 2a
struct fruit

{

char name[15];

int calories;

};

struct vegetable

{

char name[15];

int calories;

};

Structure Example 2b

struct fruit a;

struct vegetable b;

a.calories = 35;

b.calories = 45;

Another Example

struct student

{

char *lastName;

int studentID;

char grade;

};

int fail(struct student class[])

{

int i, count = 0;

for (i = 0; i < CLASS_SIZE; i++)

if (class[i].grade == ‘F’)

count++;

return count;

}

Structure Initialization

❖ A structure variable can be followed by a list of
constants contained within braces

❖ the remaining members are assigned the value 0

❖ Ex. struct card c = {12, ’s’};

❖ Ex. struct fruit frt = {“plum”, 150};

❖ We can also name members, as with arrays:

struct card c = {.value = 5, .suit = ‘d’};

Structure Assignment

❖ If a and b are variables of the same structure type, we
can write

a = b;

❖ Each member of a is assigned the value of the
corresponding value of b

Passing Structures As Function Arguments

void assignValues(struct card c, int p,

char s)

{

c.value = p;

c.suit = s;

}

Passing Structures

❖ When a structure is passed as an argument, it is copied
(because of call-by-value)

❖ It is more efficient to pass the address of the structure
instead

❖ In this case, use the member access operator -> (a dash
followed by an arrow bracket) to manipulate the
structure’s members:

p -> data = 25;

Example: Member Access
Declaration and Assignment

struct student tmp, *p = &tmp;
tmp.grade = 'A';
tmp.last_name = "Casanova";
tmp.student_id = 910017;

Expression Equivalent Expression Conceptual Value
tmp.grade p->grade A

tmp.last_name p->last_name Casanova
(*p).student_id p->student_id 910017

p->last_name+1 ((p->last_name))+1 D
*(p->last_name + 2) (p->last_name)[2] s

Using Structures with Functions
❖ Structures can be passed as arguments to a function

and can be returned from them.

❖ When a structure is passed as an argument to a
function, it is passed by value, meaning that a local
copy is made for use in the body.
❖ If a member of the structure is an array, then the array

gets copied as well.

❖ If the structure has many members, or members that are
large arrays, then passing the structure as an argument
can be relatively inefficient.

❖ An alternate scheme is to write functions that take
an address of the structure as an argument instead.

Example: Business Application

typedef struct {

char name[25];

int employee_id;

struct dept department;

struct home_address *a_ptr;

double salary;

} employee_data;

Structure type member

struct dept {
char dept_name[25];
int dep_no;

} ;

the compiler has to know
the size of each member

Pointer to a Structure

the compiler already
knows the size of a

pointer, this
structure need not

be defined first.

Example: Business Application
❖ Function to update employee information

❖ we are accessing a member of a structure within a structure

e.department.dept_no is equivalent to
(e.department).dept_no

❖ To use the function update(), we could write in
main() or in some other function
employee_data e;

e = update(e);

employee_data update(employee_data e)
{

printf(“Input the department number: “);
scanf(“%d”, &n);
e.department.dept_no = n;
return e;

}

Copy Problem

employee_data e;

e = update(e);

❖ e is being passed by value, causing a local copy of e to
be used in the body of the function; when a structure is
returned from update(), it is assigned to e, causing a
member-by-member copy to be performed. Because the
structure is large, the compiler must do a lot of copy
work.

employee_data update(employee_data e)
{

printf(“Input the department number: “);
scanf(“%d”, &n);
e.department.dept_no = n;
return e;

}

Alternate: Update Function

p->department.dept_no is equivalent to (p->department).dept_no

This version of update() can be used in main() as follows:

employee_data e;

update(&e);

❖ Here, the address of e is being passed, so no local copy of the
structure is needed within the update() function. For most
applications this is the more efficient of the two methods.

void update(employee_data *p)
{

printf(“Input the department number: “);
scanf(“%d”, &n);
p->department.dept_no = n;

}

