Enumeration Typ CS CSE 130: Introduction to

Programming in C

and StruCture S Stony Brook University

Enumeration Types

Enumeraton 1ypes

+ Used to:

+ name a finite set

» declare elements of that set (enumerators)

» Used as programmer-specified constants

+ Ex.enum color {red, blue, green, yellow};

» color is the tag name

Enumerators

« Enumerators specify the values that variables of the
enumerated type can take on

+ EX.enum boolean {false, true};
» These are constants of type int
» By default, they are given the values 0, 1, ...

« They can also be assigned specific values

Enumeration Type Variables

=« B enum color cl . c2;
%+ cl and c2 are of type enum color
= Note: the type is enum color, NOT color

» cl and c2 can only take on the values red, blue,
green, and yellow:

cl = dgreen;

» enum suilt {clubs

Iniualizing Enumerators

1, diamonds, hearts,

spades};

» diamonds, hearts, and spades have the values 2, 3, and 4
respectively

» Uninitialized enumerators are assigned consecutive values,
starting after the last initialized enumerator

» The values may be duplicated, but the identifiers must be
unique

More Declaration Examples

» enum sult {clubs, diamonds, hearts, spades} a;

» alis of type enum suit

» If we omit the tag name, then every variable of that type must

be declared as part of the enumeration type:
« enum {f1r, pine}r tree:

» No other variables of type enum {fir, pine} can be
declared

enum move {rock, paper, SClssOrs};
enum outcome {win, lose, tie};

enum outcome result;

1f (player == computer)
result = tie:
else
{
switch(player)
{
case paper:
result = (computer == rock) ? win : lose;
break;
case SC1lSsors:
result = (computer == paper) ? win : lose;
break;

etc.

The Structure Type

» A structure makes it possible to aggregate components into a
single, named variable

+» EXx. a bank account contains an account #, a balance, an
interest rate, etc.

» Structure components have individual names, and can be
accessed individually

» A structure is a derived type

« It's sort of like a primitive/limited class from an object-oriented
language

Declaring a Structure

» Structure declarations begin with the keyword struct,
followed by a tag name and a brace-enclosed list of
components

» The tag name can be used to declare variables of the
structure’s type

« The variable type is struct tag-name

Structure Example

struct account /* tag name is account */

{

long number;
float balance;

float i1nterestRate;

r7

struct account myAcct;

Structure Members

» Members of a structure can be accessed using the structure

i{ 7

member (“.”) operator:

StruckE: acecount a:
a.balance = 1234.56;
a.number = 8463745;

» Member names must be unique within the same structure

» Two different structure types may have identical member
names, though

Structure Declarations

+ We can combine a structure definition with variable
declarations

s+ struct card

{

int value;
char suit:
Y e, cdecki527]:

Structure Example 2a

struct fruit

{

char name[15];

int calories;

}i

struct vegetable

{

char name[15];

int calories;

}:

Structure Example 2b

struet fruit a:
struct vegetable b;
a.calories = 35;

b.calories = 45;

Another Example

struct student

{

char *lastName;
int studentID;

char grade;

}7

int fail(struct student class]|]

{

ant 1, count = 0:
for (1 = 0: 1 < CLASS SIZE;
1f (class[l1].grade == ‘F’
count++;

return count;

)

Structure Immualization

» A structure variable can be followed by a list ot
constants contained within braces

» the remaining members are assigned the value 0
& Ex struck card c = £12. 's’'}):
» Ex struct fruit fet = fiplum’ 150];

= We can also name members, as with arrays:

struct card ¢ = { . value = 5. suilt = "d’};

Structure Assignment

» If a and b are variables of the same structure type, we
can write

a = -

» Each member of a is assigned the value of the
corresponding value of b

Passing Structures As Function Arguments

vold assignValues(struct card c¢, int p,

char s)

c.value = p;

€. sult = 5

Passing Structures

= When a structure is passed as an argument, it is copied
(because of call-by-value)

» It is more efficient to pass the address of the structure
instead

» In this case, use the member access operator -> (a dash
followed by an arrow bracket) to manipulate the
structure’s members:

D — data — 25-:

Example: Member Access
_ DchmiomdAsgmen

struct student tmp, *p = &tmp;
tmp.grade = "A’;
tmp.last_name = “Casanova”;

tmp.student_id = 910017;

Expression Equivalent Expression Conceptual Value
tmp.grade p->grade A
tmp.last_name p->last_name (Casanova
(*p).student_id p->student_id 910017
“p->last_name+1 (*(p->last_name))+1 D
*(p->last_name + 2) (p->last_name)[2] S

Using Structures with Functions

» Structures can be passed as arguments to a function
and can be returned from them.

» When a structure is passed as an argument to a
function, it is passed by value, meaning that a local
copy is made for use in the body.

= If a member of the structure is an array, then the array
gets copied as well.

« If the structure has many members, or members that are
large arrays, then passing the structure as an argument
can be relatively inetficient.

» An alternate scheme is to write functions that take
an address of the structure as an argument instead.

Example: Business Application

sktruct dept |

el e ddept nonc (20 » the compiler has to know
int dep no; the size of each member

=

EeceieiE SR Pc |

char name[25]; Structure type member

int employee id; Pointer to a Structure

struct dept department; / the compiler already

Struct home address 2a pre, knows the size of a
pointer, this
structure need not

} employee data; be defined first.

douple Ssalary:

Example: Business Application

» Function to update employee information

cmElleec eat e ipgdate ielgligyec melatas o
{

P el lnpL b e depaEticenEs mainlsc o i e
Sean bl vd o s

codcpartienttOcpi Tlo - Ti
Eebuen e

we are accessing a member of a structure within a structure

e.department.dept no isequivalent to
(e aepar Mot T eco e

» To use the function update (), we could write in
main () orin some other function

cugleve e dalEel 0

e = update(e);

Copy Problem

ENptecctentestacart FaNbEei/c c weaita)
{

e abboriE S e vdep ari ey manlber e
SeaniE Sl N

e sdeparenent sdepi o~ 1;
Eebuyn. e

cipliavee daral o

e = update(e);

» e 1s being passed by value, causing a local copy of e to
be used in the body of the function; when a structure is
returned from update () , itis assigned to e, causing a
member-by-member copy to be performed. Because the

structure is large, the compiler must do a lot of copy
work.

Alternate: Update Function

VowdEnpdotellenpl oves =daia b))

{
e abboriE S e vdep ari ey manlber e

S Sl o)
Eedcparlment dept o, —-1;
J

p->department.dept no isequivalentto (p->department) .dept no
This version of update() can be used in main() as follows:
Sliglienvicicie sleet o
update (&e) ;

» Here, the address of e is being passed, so no local copy of the
structure is needed within the update() function. For most
applications this is the more efficient of the two methods.

